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Abstract. The behaviour of wavepackets of the ‘Dirac oscillator’ (ib+ 1) dimensions is
examined. The Dirac oscillator is a relativistic extension of the harmonic oscillator. We construct
a wavepacket in the usual Dirac representation and another one in the Foldy—Wouthuysen (FW)
representation. In the nonrelativistic limit, these wavepackets are both reduced édiSghr's
coherent wavepacket for the harmonic oscillator. The wavepacket in the Dirac representation
exhibits Zitterbewegung whereas the one in the FW representation does not. We find that the
wavepacket in the FW representation behaves much more like a classical particle than that of
the Dirac representation. This gives insights into Ehrenfest's theorem for the Dirac equation.

1. Introduction

Consider a wavepacket in nonrelativistic quantum mechanics. If the size of the wavepacket
is negligibly small, it follows from Ehrenfest’'s theorem that the expectation values of the
coordinate and momentum obey the equation of motion of classical mechanics [1, 2]. If the
potential is linear or quadratic in coordinate, the centroid of the wavepacket exactly satisfies
the corresponding classical equation of motion even when the size of the wavepacket is
not negligible. Do similar situations exist in relativistic quantum mechanics? We try to
find insights into this question by examining the behaviour of wavepackets for the one-
dimensional version of the ‘Dirac oscillator’ (DO) [3].

The DO is one of the rare examples such that the solutions of the stationary Dirac
equation are all given in simple analytical forms. In the nonrelativistic limit, the DO
is reduced to the usual harmonic oscillator (HO). Solutions of the time-dependent Dirac
equation for the DO can be written down explicitly, albeit in the form of a series. In a
recent paper we examined the time-dependent behaviour of a wavepacket for the DO in
detail [4]. The wavepacket of [4] was designed such that it starts as a minimum uncertainty
wavepacket that is displaced from the origin. This wavepacket is a relativistic extension of
Schiddinger's coherent wavepacket for the nonrelativistic HO [2, 5]. Between the DO and
HO wavepackets there are interesting differences which we will mention in due course. Here
let us single out the following difference: the DO wavepacket exhibits ‘Zitterbewegung’
[6] which makes it difficult to relate the wavepacket to its classical counterpart. When
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the wavepacket is expanded as a linear combination of the DO stationary states, negative
energy states inevitably enter. The Zitterbewegung is caused by the interference between
the positive and negative energy components of the expansion.

In [4] we used the usual representation which we will call the Dirac representation.
There is, however, a representation in which Zitterbewegung has no place. This is the
one obtained by Foldy and Wouthuysen (FW) in which the positive and negative energy
states are completely separated [7]. Historically such a representation was first obtained
by Pryce and later independently by Tani [8]. For a free particle, if coordindfa one
dimension) of the FW representation is interpreted as the position operator for the particle,
the relation among, the velocity d/df, momentump and energyt take the same form as
in classical mechanics. No Zitterbewegung appears in the FW representation. of liee
FW representation agrees with the position operator that was introduced earlier by Newton
and Wigner [9] on very general grounds. As was recently emphasized by Costella and
McKellar [10], the FW representation (or the Newton—-Wigner representation) is the only
one in which one can take a meaningful classical limit. Foldy and Wouthuysen worked out
the transformation between the Dirac and the FW representations in a closed form only for
a free particle but its extension to the case with an interaction is possible.

The purpose of this paper is to construct wavepackets in the Dirac and FW
representations for the one-dimensional DO and compare the time-dependent behaviour
of these wavepackets. We call the wavepackets in the two representations the Dirac and
FW wavepackets, respectively. In section 2 we summarize relevant features of the DO. In
section 3 we construct the Dirac and FW wavepackets. Then we present explicit illustrations
which give us insights into the difference between the Dirac and FW representations.
Summary and discussions are given in section 4.

2. The Dirac oscillator: Dirac versus FW representations

The DO in one dimension is defined by the Dirac Hamiltonian
Hp = cam + fmc? T =p—ifmox (2.2)

wherew (> 0) is a constant. For the Dirac matrices we use the22Pauli matricesy = o,
and B = o,. Heisenberg’'s equation for reads as

z—: = il_z[HD’ x] = ca. (2.2)
This leads to the well known conundrums that obscure the relationship between the
relativistic quantum and classical mechanics. Equation (2.2) implies that the measured
magnitude of the velocity is always the speed of light, leading to the notion of
Zitterbewegung [6], interpretation of which is not easy [11]. Secondly, the equation gives
no immediate connection between the velocity and momentum. This is in contrast to
dx/dt = p/m that we obtain in the nonrelativistic case. This is probably the reason why
Ehrenfest’s theorem for the Dirac equation is seldom discussed.

In their seminal paper, FW showed how the above conundrums can be avoided in the
FW representation [7, 8]. For the DO, the FW and Dirac representations are related by the
FW transformation [12],

U=éS  is= ;gﬁ(an)tanl (%) (2.3)

o* = (an)?> = 7'n = p? + (mwx)? — Bhmo. (2.4)
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The FW Hamiltonian is
Hew = UHpUT = Be[(me)? + p? + (mwx)? — ,Bﬁma)]%. (2.5)

The positive energy sect@p = 1) is completely decoupled from the negative energy sector
(B = —1) in the FW representation.
In the FW representation, Heisenberg’s equationxfand p reads as

dx i aHFW

— = _[H = 2.
g = pliew =" (26)
dp i 8H|:W

= = _[H, =— . 2.7
o = plHew Pl == 27)

Sincex and p do not commuted/dp andad/ox in the above are not simple derivatives. In

the limit of & — 0, however, these become simple derivatives. Equations (2.6) and (2.7)
for the positive energy sect@p = 1) become the same in form as the canonical equations
of motion of classical mechanics. The classical counterparts of equations (2.6) and (2.7) for
the negative energy sect¢f = —1) do not make sense. Ehrenfest’'s theorem is obtained
by taking the expectation values of equations (2.6) and (2.7). If we go back to the Dirac
representation, the of the FW representation becom&ssuch that

X=U'xU (2.8)

which is different fromx: similarly UTpU # p.
The Hp and Hrw of course share the same eigenvalues and are given by

_ 1
2nfiw\?
Ey =mc® (1 + ;0) (2.9)
mc
_ _1
2(n + Dhow 2
E*(n) = _E+(n+1) = _mCZ |:1+ mc2:| (210)

wheren = 0,1,2,.... Note thatE = —mc? is excluded in equation (2.10). Apart from
E, o = mc?, there is symmetry between the positive and negative energies.
The eigenstates afflp with E,,, and E_,, are given by

_{ Anxan(x)

¢D+(n) - (Banl(x)> (211)
o By1xns1(x)

Po-m) = <—An+1xn <x>> (212)
E, + mc? : E, — mc? :

nm (Y g (B 213

whereE, is the E, , of equation (2.9) ang, (x) is the usual normalized wavefunction for
the nonrelativistic harmonic oscillator. In particulag(x) is given by

xo(x) = (ma)/zti_l)211 exp(—mwx?/2h). (2.14)
Forn =0, we findAg =1 andBy = 0.
The eigenstates dif 7y with E ) and E_,, are simply given by

PrWt(n) = <Xnéx)> (2.15)

PrW—@m) = <Xn(()-x)> . (2.16)
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The ¢rw+ () andeéps(n) are related by the FW transformation, id@w+) = Udp+w). Note
that drwi©0) = Po+(0): DUt Pewr(n)y # Pp+(ny fOr n # 0. Except forn = 0, the expectation
value (x?) turns out to be greater fafp(, than for prwa (-

3. Dirac and FW wavepackets

We now construct wavepackets and examine their time-dependent behaviour. Let us start
with the Dirac wavepacket which we have already discussed in a recent paper [4]. We seek
a wavepacketp(x, 1), that satisfies the time-dependent Dirac equation

_0
iha\I’D(x, t) = HpVp(x, 1) (31)

and the initial condition
Wp(x, 0) = (Xo(xo‘ xo)) _ (3.2)

The ¥p(x, 0) represents a Gaussian wavepacket localized arounrd xo. This is a
minimum-uncertainty wavepacket such thaix)2(Ap)?2 = h?/4. The Wp(x,0) can
be obtained by operating the displacement operator(-edpo/h) on ¢pi(x), the
wavefunction of the state with the lowest positive energy.

In expanding¥p (x, ¢) in terms of the stationary solutions, we need botlgef,, and
¢p_m). The negative energy states cannot be arbitrarily dropped. As shown rpf4] 7)
is given by

1 gn mc? e T me?\ o
|\ 1) ==-ny,—— 14— | g iEat/h 1 =5 ) dEnt/h ; 33
p1(x, 1) 5N )} [( + E ) + E, Xn (%) (3.3
1 " 2nmcthw): -
\IJDZ(-X: t) = 7772n>0 S 1 ( ne w)2 (e_IE“t/h— - éE”t/F)Xn—l(x) (34)
2 (n!)2 E,
* 1
n= / dx xo(x) Xo(x — xo) = €2 £2 = —_mowx} (3.5)
oo 2h
where Wp; and ¥p, are the upper and lower components \bf, respectively, and the
summation is over = 0,1, 2, .... Note thatp’%,£2'/n! = 1. The expectation value of

Hp for Wp is given by
(Hp) = mc?. (3.6)
It is counter-intuitive tha{ Hp) is independent ofy. For the average value afin ¥p, we
find
1
nay=§"=moxg (A’ = (1%)ay— (12)® = §° 3.7)

which are independent of time.
We are interested in the expectation valyes, (p) andv = d(x)/dt for the Dirac
wavepackeWp. They are given by

1, & E, _
(x)p = zxon° X, — 1+ COS(E,H_]_ —E)t/h
2 n! n+1

+ <1 - En ) CO$E11+1 + En)t/]/_li| (38)

n+1
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1 £ 1 1 . _
(p)p = —7m2wxon22n— |:< + ) SIN(E,+1 — E)t/h
n

2 ! En En+l
1 1 _
— = - sin(E, ENt/h 3.9
<En En+1) ( T ) / ] ( )
d{x)p b E . .
Up = dr = c{a)p = —mwxon Znﬁ E 1[S|n(En+l — E)t/h+SiIn(E, 11 + En)t/m-
: n+

(3.10)

Each of (x)p and (p)p of the Dirac wavepacket consists of two parts, one varies in time
more rapidly than the other. The rapidly varying part consists of oscillating functions of
(E,4+1+ E,)t/h. These functions, which originate in the interference between positive and
negative energy states, cause Zitterbewegung.

For the FW wavepacket we consider the wavefunctlgg,(x, t) such that

iﬁ%\lfpw(x, t) = HrwWrw(x, 1) (311)
Wew(x, 0) = (XO(XO_ XO)). (3.12)
The Wrw(x, t) is given by
e 1) = Es o frwsn@ B = s, S <X"(X)) e (3.13)
(n!)2 mhz \ O

Let us emphasize that we do not neggy_, in the expansion. Unlike inp(x, t), the
lower component oflgy(x, t) remain zero.

If we approximateE, by E, = mc? + nhow, the upper component @f-w(x, t) becomes
the wavefunction of Scldinger's coherent state times the phase factor(-eipc?t /).
The ¥p and Wgy obtained above are not related by the FW transformalipfy = U Yp.
This is because the initial conditions (3.2) and (3.12) are suchdthgt= U¥p # Y¥p at
t = 0. The expectation value dfry for Wgy is given by
25 &

(Hrw) =1 Enﬁ
which is greater thanHp). If we approximateE, with E, = mc? + nhw, equation (3.14)
becomeg Hrw) = mc?+ gmaﬁxg. For the average value affor Wgy equation (3.7) holds
as such.

The expectation value&:), (p) and dx)/dzr in the FW representation are given by

E, (3.14)

2n
(X)pw = xoanni—' COS[E,+1 — E,)t/h] (3.15)
2n
(P)Fw = —ma)xonzzni—' SIN[(E, 11 — E,)t/h] (3.16)
_ d{x)rw s £ .
VEW = ar = —Xon EHW[(EIPF:L — E,,)/m SIn[(E,H_]_ — En)l/m (317)

The (x)rw is the X (¢) of equation (3.12) of [4]. Note that)rw and (p)rw are free from
Zitterbewegung. If we approximatg,.; — E, with hw, the (x)rw and (p)rw are reduced
to those of Schirdinger’s nonrelativistic coherent state.

We want to compare the behaviour of the wavepackets constructed above with their
classical counterpart. Let us define the classical counterpart by means of the FW
Hamiltonian for the positive energy sect@# = 1),

H, = c[(mc)? + p? + (mwx)? — i_lmw]%. (3.18)
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We retain the term witlk, although it should be dropped in the strictly classical situation.
The classical equations of motion with thig are

dH., 2 dH, 2
g e _cpo o OHe_ (meo)x (3.19)
ap E dax E

wherex = dx/dt and E = H, = constant. Ther and p are given by

mcz

x(t) = xo COSwpt wp = 70) (3.20)

E
p(t) = (1) = —moxoSinw,t (3.21)
C

where we have chosen the initial conditiot0) = xo and p(0) = 0, which corresponds to
the initial conditions (3.2) and (3.12) for the wavepackets.

We are now ready to examine the wavepackets and their classical counterpart in detail.
Before doing so, however, it would be appropriate to give some general remarks about the
wavepackets of the DO. One may expect that the DO wavepackets that we have constructed
are very similar to Sclidinger's coherent wavepacket of the nonrelativistic HO [2,5].
Because the DO energy levels are not equally spaced, however, complications arise in the
behaviour of the DO wavepackets. Unlike Satinger’'s coherent state, the shape (in terms
of the probability density distribution) of the DO wavepacket (in either of the Dirac and the
FW representation) changes in time and the initial wavefunction is not exactly restored. For
the wavepackets we have constructesly)2(Ap)? = h?/4 attr = 0 but(Ax)2(Ap)? > h?/4
for t > 0. We have already discussed such features for the Dirac wavepacket in detail [4].

Throughout the following numerical illustrations we express the energy su¢éhaasl
he in units of mc?, x in hi/me, t in h/mc?, p in mc andv in ¢. For hw, we take
ho = 0.1 (i.e. hw/mc? = 0.1) in all illustrations. Forxg we examine two casesy = 5
andxo = 30. Then,, is respectively 1.25 and 45 in these two cases. Figures 1-4 are for
xo = 5 and figures 5-8 are forp = 30. Each figure has two parts; paal) (s for the Dirac
representation and pati)(for the FW representation. Figure 1 shows the probability density

T | 1 ¥ | T
(@) x,=5 () Xo=5

100 %
—— ——

100

50 50

A

N=—=A 0

-20 0 20 -20 0 20
X X

Figure 1. The densityp(x, ) = |¥(x, r)|2 of the wavepacket in an arbitrary scale fa) the
Dirac representation and) the FW representation is in units ofi/mc ands in h/mc?. The
values of the parameters arew/mc? = 0.1 andxg = 5(/mc).
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Figure 2. The expectation valugx) (full curve), its classical counterpart(s) (dotted curve),
and the difference(x) — x(¢) (chain curve), are shown for) the Dirac representation an)(
the FW representation is in units ofz/mc andz in h/mc2. The values of the parameters are
the same as those of figure 1.

o~ O . 6 H l ¥
A 0
o E
A A
o [a N
A\ A\
s o
[=% o
N .
& 5
v v
0 50 100
t

Figure 3. The expectation valudp) (full curve), its classical counterparp(z) (dotted curve),
and the difference(p) — p(¢) (chain curve), are shown foa) the Dirac representation and)(
the FW representationp is in units of mc andt in i/mc?. The values of the parameters are
the same as those of figure 1.

p(x,t) = |W(x, 1)|? in an arbitrary scale in the two representations. The density in the FW
representation is smoother. Figure 2 compdseg, (x)rw and the classical(¢). Similarly
figures 3 and 4 comparé)p etc andvp, respectively. In the Dirac representation the
expectation values exhibit rapid oscillations which we interpret as Zitterbewegung, which
is most conspicuous in figure 4.

Figures 5-8 show the same quantities as those of figures 1-4,but30 in figures
5-8 as compared witlp = 5 of figures 1-4. Note the difference in the scalesfaand
t between figures 1-4 and figures 5-8. The wavepackets of figure 5 oscillate more slowly
than those of figure 1. This is because the DO energy separation is smaller for larger values
of n. In figures 6 and 7 the amplitudes of Zitterbewegung are so small that they are almost
undiscernible.

In figures 2—4, the smooth part @¢k)p etc are very similar tox)rw etc, which in
turn are not very different fromx(z) etc, respectively. We expected similar situations in
figures 6-8, and is indeed the case in figures 6 and 8, but not in figure 7. Figure 7 is
particularly noteworthy. It shows that the smooth part @fp and(p)rw are very different.
We carefully confirmed this rather surprising result. Théry is much closer tg(¢) than
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0.6 . , .
Xg=5 Y (a)

vy (1), vp—v(t)
o
l

0 50 100 ) 50 100

Figure 4. The velocityv = d(x)/dr (full curve) of the wavepacket, its classical counterpart,
v(t) (dotted curve), and the difference between them (chain curve), are showa) tve(Dirac
representation and) the FW representation. The chain curve is not showra)rbgcause it is
very awkward to plot.v is in units ofc andt in i/mc?. The values of the parameters are the
same as those of figure 1.

250

P e —

t t
>
0 1 : /\%‘:— 0 " 1 y/f\”t
~50 0 50  -50 0 50
X X

Figure 5. The densityp(x, t) = |¥(x, 1)|? of the wavepacket in an arbitrary scale fay) the
Dirac representation andb) the FW representation. The parameters and units are the same as
those of figure 1 except thay = 30 (2/mc).

(p)p is. Itis clear that the behaviour of the FW wavepacket is much more like its classical
counterpart.

Even the FW wavepacket does not follow the trajectory of its classical counterpart very
closely. This is not surprising because£ 0 in the calculation. Recall thaty, is 1.25
for figures 1-4 and 45 for figures 5-8. By comparing these two sets of figures, we notice
that the gap between the wavepacket and its classical counterpart diminisheajylen
increased. We confirmed this trend by repeating the calculation for even larger valuges of
(and hence for larger values 0f,).



Behaviour of wavepackets of the ‘Dirac oscillator’ 2593

= 30
= %

T *,

£ &

*®

v 0
< %

a E

A A

» x

= =30

0 125 250 0 125 250
t t

Figure 6. The expectation valugx) (full curve), its classical counterpart(s) (dotted curve),

and the difference(x) — x(¢) (chain curve), are shown foe) the Dirac representation and)(

the FW representation. The parameters and units are the same as those of figure 2 except that
x0 = 30(h/mc).
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<p e P(L), <p>gy—p(t)
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Figure 7. The expectation valudp) (full curve), its classical counterparnp(z) (dotted curve),

and the difference(p) — p(¢r) (chain curve), are shown foe) the Dirac representation ant)(

the FW representation. The parameters and units are the same as those of figure 3 except that
xo = 30(h/mc).

4. Summary and discussion

For the one-dimensional version of the Dirac oscillator which is exactly solvable, we
illustrated the behaviour of wavepackets in the Dirac and FW representations. In the
FW representation the positive and negative energy states are completely decoupled. The
centroid of the wavepacket exhibits Zitterbewegung in the Dirac representation but not in
the FW representation. The wavepacket, although it dissipates in time, behaves much more
like a classical particle in the FW representation than in the Dirac representation.
Ehrenfest’s theorem can be obtained by taking the expectation values of Heisenberg’s
equations forx and p. The theorem takes a natural form in the FW representation. In the
limit of 7 — 0, Heisenberg’s equations farand p of the positive energy sect@g = 1)
of the FW representation become the same in form as the canonical equation of motion
of classical mechanics. In this way Ehrenfest’'s theorem gives a link between relativistic
quantum and classical mechanics. We believe that the features that we have found are of a
general nature rather than peculiar to the specific model that we have chosen. We concur
with Costella and McKellar [10] in that the FW representation is the only one in which a
meaningful classical limit can be obtained.
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3_ T | T p— 3_ T l 1 i
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>é o -1 >:% - _
-3 1 | 1 —] ——8 — L | 1 —
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Figure 8. The velocityv = d(x)/ds (full curve) of the wavepacket, its classical counterpart,
v(t) (dotted curve), and the difference between them (chain curve), are showa) five(Dirac
representation and) the FW representation. The chain curve is not showra)rbgcause it is

very awkward to plot. The parameters and units are the same as those of figure 4 except that
xo = 30(h/mc).

The wavepackets of the DO that we have examined are relativistic extensions of
Schibdinger’'s coherent wavepacket of the nonrelativistic HO. Unlike the HO, however,
the energy levels of the DO are not equally spaced. This makes it impossible to construct
a wavepacket that can remain cohesive for a long time. It is, however, possible to modify
the DO in such a way that the energy levels become equally spaced. This can be done by
replacingmwx of equation (2.1) with general ‘superpotentigl{x) and determiningf (x)
by means of the ‘inverse scattering’ method. This problem is similar to example D of [13].
Then one can have a wavepacket such that, although its shape changes between the recurring
times, its initial wavefunction recurs periodically. This wavepacket is not dispersed like
those we have examined.

It is generally difficult to find the FW transformation in a closed form. Let us mention
two systems for which the FW transformation can be found in a closed form: (a) a charged
particle of spin half placed in a magnetic field (but no electric field), and (b) a neutral
particle of spin half with an anomalous magnetic moment (like the neutron) placed in an
electric field (but no magnetic field). For (a) see [14] for example; for system (b), the
Hamiltonian due to the interaction between the magnetic momearid the electric field&
is, in standard notation,

%M,BG’”FM = —ipuBa - E. (4.2)
The Dirac Hamiltonian of the system is

Hp = cac - 7 + Bmc? 7r=p—£,uﬂ8. (4.2)

If £ is proportional tor, this system is nothing but the DO in three dimensions [3,12].
If £ is of the form of(x, 0, 0), the system is reduced to the DO in one dimension. Note
thatw commutes with8mc?. The FW transformation can be worked out in the same way
as equations (2.3)—-(2.5). This system is of interest in relation to the Aharonov—Casher
effect [15]. For extensions of the two cases given above, see [16]. Even when the FW
transformation cannot be found in a closed form, it can be worked out in a successive manner
as shown by FW. In this sense we can assume the existence of the FW transformation in
general.

Finally let us add a remark regarding the Klein—Gordon (KG) equation for the spin
zero particle. When appropriately interpreted, the KG equation is an acceptable equation
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in quantum mechanics. It has a second-order time derivative, but can be rewritten as a
pair of equations which contain only first-order time derivatives. In this new form the
wavefunction can be regarded as a two-component one and the Hamiltonian ks2a 2
matrix. This Hamiltonian can be diagonalized by a transformation which is similar to the
FW transformation. When this is done the positive and negative energy solutions become
decoupled. In each of the positive and negative energy sectors, probability interpretation of
the wavefunction is possible [17]. Ehrenfest’s theorem for the KG equation can be worked
out in a way similar to that for the Dirac equation.
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