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Abstract. The behaviour of wavepackets of the ‘Dirac oscillator’ in(1+ 1) dimensions is
examined. The Dirac oscillator is a relativistic extension of the harmonic oscillator. We construct
a wavepacket in the usual Dirac representation and another one in the Foldy–Wouthuysen (FW)
representation. In the nonrelativistic limit, these wavepackets are both reduced to Schrödinger’s
coherent wavepacket for the harmonic oscillator. The wavepacket in the Dirac representation
exhibits Zitterbewegung whereas the one in the FW representation does not. We find that the
wavepacket in the FW representation behaves much more like a classical particle than that of
the Dirac representation. This gives insights into Ehrenfest’s theorem for the Dirac equation.

1. Introduction

Consider a wavepacket in nonrelativistic quantum mechanics. If the size of the wavepacket
is negligibly small, it follows from Ehrenfest’s theorem that the expectation values of the
coordinate and momentum obey the equation of motion of classical mechanics [1, 2]. If the
potential is linear or quadratic in coordinate, the centroid of the wavepacket exactly satisfies
the corresponding classical equation of motion even when the size of the wavepacket is
not negligible. Do similar situations exist in relativistic quantum mechanics? We try to
find insights into this question by examining the behaviour of wavepackets for the one-
dimensional version of the ‘Dirac oscillator’ (DO) [3].

The DO is one of the rare examples such that the solutions of the stationary Dirac
equation are all given in simple analytical forms. In the nonrelativistic limit, the DO
is reduced to the usual harmonic oscillator (HO). Solutions of the time-dependent Dirac
equation for the DO can be written down explicitly, albeit in the form of a series. In a
recent paper we examined the time-dependent behaviour of a wavepacket for the DO in
detail [4]. The wavepacket of [4] was designed such that it starts as a minimum uncertainty
wavepacket that is displaced from the origin. This wavepacket is a relativistic extension of
Schr̈odinger’s coherent wavepacket for the nonrelativistic HO [2, 5]. Between the DO and
HO wavepackets there are interesting differences which we will mention in due course. Here
let us single out the following difference: the DO wavepacket exhibits ‘Zitterbewegung’
[6] which makes it difficult to relate the wavepacket to its classical counterpart. When
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the wavepacket is expanded as a linear combination of the DO stationary states, negative
energy states inevitably enter. The Zitterbewegung is caused by the interference between
the positive and negative energy components of the expansion.

In [4] we used the usual representation which we will call the Dirac representation.
There is, however, a representation in which Zitterbewegung has no place. This is the
one obtained by Foldy and Wouthuysen (FW) in which the positive and negative energy
states are completely separated [7]. Historically such a representation was first obtained
by Pryce and later independently by Tani [8]. For a free particle, if coordinatex (in one
dimension) of the FW representation is interpreted as the position operator for the particle,
the relation amongx, the velocity dx/dt , momentump and energyE take the same form as
in classical mechanics. No Zitterbewegung appears in the FW representation. Thex of the
FW representation agrees with the position operator that was introduced earlier by Newton
and Wigner [9] on very general grounds. As was recently emphasized by Costella and
McKellar [10], the FW representation (or the Newton–Wigner representation) is the only
one in which one can take a meaningful classical limit. Foldy and Wouthuysen worked out
the transformation between the Dirac and the FW representations in a closed form only for
a free particle but its extension to the case with an interaction is possible.

The purpose of this paper is to construct wavepackets in the Dirac and FW
representations for the one-dimensional DO and compare the time-dependent behaviour
of these wavepackets. We call the wavepackets in the two representations the Dirac and
FW wavepackets, respectively. In section 2 we summarize relevant features of the DO. In
section 3 we construct the Dirac and FW wavepackets. Then we present explicit illustrations
which give us insights into the difference between the Dirac and FW representations.
Summary and discussions are given in section 4.

2. The Dirac oscillator: Dirac versus FW representations

The DO in one dimension is defined by the Dirac Hamiltonian

HD = cαπ + βmc2 π = p − iβmωx (2.1)

whereω(> 0) is a constant. For the Dirac matrices we use the 2×2 Pauli matrices,α = σy
andβ = σz. Heisenberg’s equation forx reads as

dx

dt
= i

h̄
[HD, x] = cα. (2.2)

This leads to the well known conundrums that obscure the relationship between the
relativistic quantum and classical mechanics. Equation (2.2) implies that the measured
magnitude of the velocity is always the speed of light,c, leading to the notion of
Zitterbewegung [6], interpretation of which is not easy [11]. Secondly, the equation gives
no immediate connection between the velocity and momentum. This is in contrast to
dx/dt = p/m that we obtain in the nonrelativistic case. This is probably the reason why
Ehrenfest’s theorem for the Dirac equation is seldom discussed.

In their seminal paper, FW showed how the above conundrums can be avoided in the
FW representation [7, 8]. For the DO, the FW and Dirac representations are related by the
FW transformation [12],

U = eiS iS = 1

2g
β(απ) tan−1

( g
mc

)
(2.3)

g2 = (απ)2 = π †π = p2+ (mωx)2− βh̄mω. (2.4)
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The FW Hamiltonian is

HFW = UH DU
† = βc[(mc)2+ p2+ (mωx)2− βh̄mω]

1
2 . (2.5)

The positive energy sector(β = 1) is completely decoupled from the negative energy sector
(β = −1) in the FW representation.

In the FW representation, Heisenberg’s equation forx andp reads as

dx

dt
= i

h̄
[HFW, x] = ∂HFW

∂p
(2.6)

dp

dt
= i

h̄
[HFW, p] = −∂HFW

∂x
. (2.7)

Sincex andp do not commute,∂/∂p and∂/∂x in the above are not simple derivatives. In
the limit of h̄ → 0, however, these become simple derivatives. Equations (2.6) and (2.7)
for the positive energy sector(β = 1) become the same in form as the canonical equations
of motion of classical mechanics. The classical counterparts of equations (2.6) and (2.7) for
the negative energy sector(β = −1) do not make sense. Ehrenfest’s theorem is obtained
by taking the expectation values of equations (2.6) and (2.7). If we go back to the Dirac
representation, thex of the FW representation becomesX such that

X = U †xU (2.8)

which is different fromx: similarly U †pU 6= p.
TheHD andHFW of course share the same eigenvalues and are given by

E+(n) = mc2

(
1+ 2nh̄ω

mc2

)1
2

(2.9)

E−(n) = −E+(n+1) = −mc2

[
1+ 2(n+ 1)h̄ω

mc2

]1
2

(2.10)

wheren = 0, 1, 2, . . .. Note thatE = −mc2 is excluded in equation (2.10). Apart from
E+(0) = mc2, there is symmetry between the positive and negative energies.

The eigenstates ofHD with E+(n) andE−(n) are given by

φD+(n) =
(
Anχn(x)

Bnχn−1(x)

)
(2.11)

φD−(n) =
(
Bn+1χn+1(x)

−An+1χn(x)

)
(2.12)

An =
(
En +mc2

2En

)1
2

Bn =
(
En −mc2

2En

)1
2

(2.13)

whereEn is theE+(n) of equation (2.9) andχn(x) is the usual normalized wavefunction for
the nonrelativistic harmonic oscillator. In particular,χ0(x) is given by

χ0(x) = (mω/πh̄) 1
4 exp(−mωx2/2h̄). (2.14)

For n = 0, we findA0 = 1 andB0 = 0.
The eigenstates ofHFW with E+(n) andE−(n) are simply given by

φFW+(n) =
(
χn(x)

0

)
(2.15)

φFW−(n) =
(

0
χn(x)

)
. (2.16)
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TheφFW±(n) andφD±(n) are related by the FW transformation, i.e.φFW±(n) = UφD±(n). Note
that φFW+(0) = φD+(0), but φFW±(n) 6= φD±(n) for n 6= 0. Except forn = 0, the expectation
value〈x2〉 turns out to be greater forφD±(n) than forφFW±(n).

3. Dirac and FW wavepackets

We now construct wavepackets and examine their time-dependent behaviour. Let us start
with the Dirac wavepacket which we have already discussed in a recent paper [4]. We seek
a wavepacket,9D(x, t), that satisfies the time-dependent Dirac equation

ih̄
∂

∂t
9D(x, t) = HD9D(x, t) (3.1)

and the initial condition

9D(x, 0) =
(
χ0(x − x0)

0

)
. (3.2)

The 9D(x, 0) represents a Gaussian wavepacket localized aroundx = x0. This is a
minimum-uncertainty wavepacket such that(1x)2(1p)2 = h̄2/4. The 9D(x, 0) can
be obtained by operating the displacement operator exp(−ipx0/h̄) on φD+(0)(x), the
wavefunction of the state with the lowest positive energy.

In expanding9D(x, t) in terms of the stationary solutions, we need both ofφD+(n) and
φD−(n). The negative energy states cannot be arbitrarily dropped. As shown in [4]9D(x, t)

is given by

9D1(x, t) = 1

2
η6n

ξn

(n!)
1
2

[(
1+ mc

2

En

)
e−iEnt/h̄ +

(
1− mc

2

En

)
eiEnt/h̄

]
χn(x) (3.3)

9D2(x, t) = 1

2
η6n>0

ξn

(n!)
1
2

(2nmc2h̄ω)
1
2

En
(e−iEnt/h̄ − eiEnt/h̄)χn−1(x) (3.4)

η =
∫ ∞
−∞

dxχ0(x)χ0(x − x0) = e−
1
2 ξ

2
ξ2 = 1

2h̄
mωx2

0 (3.5)

where9D1 and 9D2 are the upper and lower components of9D, respectively, and the
summation is overn = 0, 1, 2, . . .. Note thatη26nξ

2n/n! = 1. The expectation value of
HD for 9D is given by

〈HD〉 = mc2. (3.6)

It is counter-intuitive that〈HD〉 is independent ofx0. For the average value ofn in 9D, we
find

nav = ξ2 = 1

2h̄
mωx2

0 (1n)2 ≡ (n2)av− (nav)
2 = ξ2 (3.7)

which are independent of time.
We are interested in the expectation values〈x〉, 〈p〉 and v ≡ d〈x〉/dt for the Dirac

wavepacket9D. They are given by

〈x〉D = 1

2
x0η

26n
ξ2n

n!

[(
1+ En

En+1

)
cos(En+1− En)t/h̄

+
(

1− En

En+1

)
cos(En+1+ En)t/h̄

]
(3.8)
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〈p〉D = −1

2
m2ωx0η

26n
ξ2n

n!

[(
1

En
+ 1

En+1

)
sin(En+1− En)t/h̄

−
(

1

En
− 1

En+1

)
sin(En+1+ En)t/h̄

]
(3.9)

vD ≡ d〈x〉D
dt
= c〈α〉D = −mωx0η

26n
ξ2n

n!

1

En+1
[sin(En+1− En)t/h̄+ sin(En+1+ En)t/h̄].

(3.10)

Each of〈x〉D and 〈p〉D of the Dirac wavepacket consists of two parts, one varies in time
more rapidly than the other. The rapidly varying part consists of oscillating functions of
(En+1+En)t/h̄. These functions, which originate in the interference between positive and
negative energy states, cause Zitterbewegung.

For the FW wavepacket we consider the wavefunction9FW(x, t) such that

ih̄
∂

∂t
9FW(x, t) = HFW9FW(x, t) (3.11)

9FW(x, 0) =
(
χ0(x − x0)

0

)
. (3.12)

The9FW(x, t) is given by

9FW(x, t) = η6n ξn

(n!)
1
2

φFW+(n)e−iEnt/h̄ = η6n ξn

(n!)
1
2

(
χn(x)

0

)
e−iEnt/h̄. (3.13)

Let us emphasize that we do not needφFW−(n) in the expansion. Unlike in9D(x, t), the
lower component of9FW(x, t) remain zero.

If we approximateEn by En = mc2+nh̄ω, the upper component ofφFW(x, t) becomes
the wavefunction of Schrödinger’s coherent state times the phase factor exp(−imc2t/h̄).
The9D and9FW obtained above are not related by the FW transformation9FW = U9D.
This is because the initial conditions (3.2) and (3.12) are such that9FW = U9D 6= 9D at
t = 0. The expectation value ofHFW for 9FW is given by

〈HFW〉 = η26n
ξ2n

n!
En (3.14)

which is greater than〈HD〉. If we approximateEn with En = mc2 + nh̄ω, equation (3.14)
becomes〈HFW〉 = mc2+ 1

2mω
2x2

0. For the average value ofn for 9FW equation (3.7) holds
as such.

The expectation values〈x〉, 〈p〉 and d〈x〉/dt in the FW representation are given by

〈x〉FW = x0η
26n

ξ2n

n!
cos[(En+1− En)t/h̄] (3.15)

〈p〉FW = −mωx0η
26n

ξ2n

n!
sin[(En+1− En)t/h̄] (3.16)

vFW ≡ d〈x〉FW

dt
= −x0η

26n
ξ2n

n!
[(En+1− En)/h̄] sin[(En+1− En)t/h̄]. (3.17)

The 〈x〉FW is theX(t) of equation (3.12) of [4]. Note that〈x〉FW and 〈p〉FW are free from
Zitterbewegung. If we approximateEn+1 − En with h̄ω, the 〈x〉FW and 〈p〉FW are reduced
to those of Schr̈odinger’s nonrelativistic coherent state.

We want to compare the behaviour of the wavepackets constructed above with their
classical counterpart. Let us define the classical counterpart by means of the FW
Hamiltonian for the positive energy sector(β = 1),

Hc = c[(mc)2+ p2+ (mωx)2− h̄mω]
1
2 . (3.18)
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We retain the term with ¯h, although it should be dropped in the strictly classical situation.
The classical equations of motion with thisHc are

ẋ = ∂Hc

∂p
= c2p

E
ṗ = −∂Hc

∂x
= − (mcω)

2x

E
(3.19)

whereẋ = dx/dt andE = Hc = constant. Thex andp are given by

x(t) = x0 cosωpt ωp = mc2

E
ω (3.20)

p(t) = E

c2
ẋ(t) = −mωx0 sinωpt (3.21)

where we have chosen the initial conditionx(0) = x0 andp(0) = 0, which corresponds to
the initial conditions (3.2) and (3.12) for the wavepackets.

We are now ready to examine the wavepackets and their classical counterpart in detail.
Before doing so, however, it would be appropriate to give some general remarks about the
wavepackets of the DO. One may expect that the DO wavepackets that we have constructed
are very similar to Schrödinger’s coherent wavepacket of the nonrelativistic HO [2, 5].
Because the DO energy levels are not equally spaced, however, complications arise in the
behaviour of the DO wavepackets. Unlike Schrödinger’s coherent state, the shape (in terms
of the probability density distribution) of the DO wavepacket (in either of the Dirac and the
FW representation) changes in time and the initial wavefunction is not exactly restored. For
the wavepackets we have constructed,(1x)2(1p)2 = h̄2/4 att = 0 but(1x)2(1p)2 > h̄2/4
for t > 0. We have already discussed such features for the Dirac wavepacket in detail [4].

Throughout the following numerical illustrations we express the energy such asE and
h̄ω in units of mc2, x in h̄/mc, t in h̄/mc2, p in mc and v in c. For h̄ω, we take
h̄ω = 0.1 (i.e. h̄ω/mc2 = 0.1) in all illustrations. Forx0 we examine two cases,x0 = 5
andx0 = 30. Thenav is respectively 1.25 and 45 in these two cases. Figures 1–4 are for
x0 = 5 and figures 5–8 are forx0 = 30. Each figure has two parts; part (a) is for the Dirac
representation and part (b) for the FW representation. Figure 1 shows the probability density

Figure 1. The densityρ(x, t) = |9(x, t)|2 of the wavepacket in an arbitrary scale for (a) the
Dirac representation and (b) the FW representation.x is in units ofh̄/mc and t in h̄/mc2. The
values of the parameters are: ¯hω/mc2 = 0.1 andx0 = 5(h̄/mc).



Behaviour of wavepackets of the ‘Dirac oscillator’ 2591

Figure 2. The expectation value,〈x〉 (full curve), its classical counterpart,x(t) (dotted curve),
and the difference,〈x〉 − x(t) (chain curve), are shown for (a) the Dirac representation and (b)
the FW representation.x is in units ofh̄/mc and t in h̄/mc2. The values of the parameters are
the same as those of figure 1.

Figure 3. The expectation value,〈p〉 (full curve), its classical counterpart,p(t) (dotted curve),
and the difference,〈p〉 − p(t) (chain curve), are shown for (a) the Dirac representation and (b)
the FW representation.p is in units ofmc and t in h̄/mc2. The values of the parameters are
the same as those of figure 1.

ρ(x, t) = |9(x, t)|2 in an arbitrary scale in the two representations. The density in the FW
representation is smoother. Figure 2 compares〈x〉D, 〈x〉FW and the classicalx(t). Similarly
figures 3 and 4 compare〈p〉D etc andvD, respectively. In the Dirac representation the
expectation values exhibit rapid oscillations which we interpret as Zitterbewegung, which
is most conspicuous in figure 4.

Figures 5–8 show the same quantities as those of figures 1–4 butx0 = 30 in figures
5–8 as compared withx0 = 5 of figures 1–4. Note the difference in the scales forx and
t between figures 1–4 and figures 5–8. The wavepackets of figure 5 oscillate more slowly
than those of figure 1. This is because the DO energy separation is smaller for larger values
of n. In figures 6 and 7 the amplitudes of Zitterbewegung are so small that they are almost
undiscernible.

In figures 2–4, the smooth part of〈x〉D etc are very similar to〈x〉FW etc, which in
turn are not very different fromx(t) etc, respectively. We expected similar situations in
figures 6–8, and is indeed the case in figures 6 and 8, but not in figure 7. Figure 7 is
particularly noteworthy. It shows that the smooth part of〈p〉D and〈p〉FW are very different.
We carefully confirmed this rather surprising result. The〈p〉FW is much closer top(t) than
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Figure 4. The velocityv = d〈x〉/dt (full curve) of the wavepacket, its classical counterpart,
v(t) (dotted curve), and the difference between them (chain curve), are shown for (a) the Dirac
representation and (b) the FW representation. The chain curve is not shown in (a) because it is
very awkward to plot.v is in units ofc and t in h̄/mc2. The values of the parameters are the
same as those of figure 1.

Figure 5. The densityρ(x, t) = |9(x, t)|2 of the wavepacket in an arbitrary scale for (a) the
Dirac representation and (b) the FW representation. The parameters and units are the same as
those of figure 1 except thatx0 = 30 (h̄/mc).

〈p〉D is. It is clear that the behaviour of the FW wavepacket is much more like its classical
counterpart.

Even the FW wavepacket does not follow the trajectory of its classical counterpart very
closely. This is not surprising because ¯h 6= 0 in the calculation. Recall thatnav is 1.25
for figures 1–4 and 45 for figures 5–8. By comparing these two sets of figures, we notice
that the gap between the wavepacket and its classical counterpart diminishes whennav is
increased. We confirmed this trend by repeating the calculation for even larger values ofx0

(and hence for larger values ofnav).
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Figure 6. The expectation value,〈x〉 (full curve), its classical counterpart,x(t) (dotted curve),
and the difference,〈x〉 − x(t) (chain curve), are shown for (a) the Dirac representation and (b)
the FW representation. The parameters and units are the same as those of figure 2 except that
x0 = 30(h̄/mc).

Figure 7. The expectation value,〈p〉 (full curve), its classical counterpart,p(t) (dotted curve),
and the difference,〈p〉 − p(t) (chain curve), are shown for (a) the Dirac representation and (b)
the FW representation. The parameters and units are the same as those of figure 3 except that
x0 = 30(h̄/mc).

4. Summary and discussion

For the one-dimensional version of the Dirac oscillator which is exactly solvable, we
illustrated the behaviour of wavepackets in the Dirac and FW representations. In the
FW representation the positive and negative energy states are completely decoupled. The
centroid of the wavepacket exhibits Zitterbewegung in the Dirac representation but not in
the FW representation. The wavepacket, although it dissipates in time, behaves much more
like a classical particle in the FW representation than in the Dirac representation.

Ehrenfest’s theorem can be obtained by taking the expectation values of Heisenberg’s
equations forx andp. The theorem takes a natural form in the FW representation. In the
limit of h̄→ 0, Heisenberg’s equations forx andp of the positive energy sector(β = 1)
of the FW representation become the same in form as the canonical equation of motion
of classical mechanics. In this way Ehrenfest’s theorem gives a link between relativistic
quantum and classical mechanics. We believe that the features that we have found are of a
general nature rather than peculiar to the specific model that we have chosen. We concur
with Costella and McKellar [10] in that the FW representation is the only one in which a
meaningful classical limit can be obtained.
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Figure 8. The velocityv = d〈x〉/dt (full curve) of the wavepacket, its classical counterpart,
v(t) (dotted curve), and the difference between them (chain curve), are shown for (a) the Dirac
representation and (b) the FW representation. The chain curve is not shown in (a) because it is
very awkward to plot. The parameters and units are the same as those of figure 4 except that
x0 = 30(h̄/mc).

The wavepackets of the DO that we have examined are relativistic extensions of
Schr̈odinger’s coherent wavepacket of the nonrelativistic HO. Unlike the HO, however,
the energy levels of the DO are not equally spaced. This makes it impossible to construct
a wavepacket that can remain cohesive for a long time. It is, however, possible to modify
the DO in such a way that the energy levels become equally spaced. This can be done by
replacingmωx of equation (2.1) with general ‘superpotential’f (x) and determiningf (x)
by means of the ‘inverse scattering’ method. This problem is similar to example D of [13].
Then one can have a wavepacket such that, although its shape changes between the recurring
times, its initial wavefunction recurs periodically. This wavepacket is not dispersed like
those we have examined.

It is generally difficult to find the FW transformation in a closed form. Let us mention
two systems for which the FW transformation can be found in a closed form: (a) a charged
particle of spin half placed in a magnetic field (but no electric field), and (b) a neutral
particle of spin half with an anomalous magnetic moment (like the neutron) placed in an
electric field (but no magnetic field). For (a) see [14] for example; for system (b), the
Hamiltonian due to the interaction between the magnetic momentµ and the electric fieldE
is, in standard notation,

1
2µβσ

µνFµν = −iµβα · E . (4.1)

The Dirac Hamiltonian of the system is

HD = cα · π + βmc2 π = p− i

c
µβE . (4.2)

If E is proportional tor , this system is nothing but the DO in three dimensions [3, 12].
If E is of the form of(x, 0, 0), the system is reduced to the DO in one dimension. Note
thatπ commutes withβmc2. The FW transformation can be worked out in the same way
as equations (2.3)–(2.5). This system is of interest in relation to the Aharonov–Casher
effect [15]. For extensions of the two cases given above, see [16]. Even when the FW
transformation cannot be found in a closed form, it can be worked out in a successive manner
as shown by FW. In this sense we can assume the existence of the FW transformation in
general.

Finally let us add a remark regarding the Klein–Gordon (KG) equation for the spin
zero particle. When appropriately interpreted, the KG equation is an acceptable equation
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in quantum mechanics. It has a second-order time derivative, but can be rewritten as a
pair of equations which contain only first-order time derivatives. In this new form the
wavefunction can be regarded as a two-component one and the Hamiltonian is a 2× 2
matrix. This Hamiltonian can be diagonalized by a transformation which is similar to the
FW transformation. When this is done the positive and negative energy solutions become
decoupled. In each of the positive and negative energy sectors, probability interpretation of
the wavefunction is possible [17]. Ehrenfest’s theorem for the KG equation can be worked
out in a way similar to that for the Dirac equation.

Acknowledgments

This work was supported by the Ministry of Education of Japan, the Natural Sciences and
Engineering Research Council of Canada and Funda¸cão de Amparòa Pesquisas do Estado
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